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1. Introduction

For some number field 𝐾 , understanding the Galois group Gal(𝐿/𝐾) of an extension 𝐿/𝐾 is
a fundamental problem in algebraic number theory. For general extensions, this problem can be
quite difficult. However, by restricting our attention to abelian extensions, it turns out that we
can give a complete description of the abelian extensions in terms of the arithmetic of the base
field. Class field theory makes this description precise by eliciting a surjective homomorphism
between Gal(𝐿/𝐾) for a finite abelian extension 𝐿/𝐾 and the group of fractional ideals modulo
the conductor 𝔠𝐿/𝐾 of the extension 𝐿/𝐾 . The kernel of this map can be described explicitly. The
main results of class field theory will be stated in greater detail in Section 2

Recall the Kronecker–Weber theorem, which states that every finite abelian extension ofℚ is
contained in a cyclotomic fieldℚ(𝜇𝑛) for some𝑛, where 𝜇𝑛 denotes the group of complex𝑛th roots
of unity. This result allows us to arrive at an analytic realization of the class field theory of ℚ in
terms of the values of the exponential function at the torsion points ofℂ/ℤ, which wewill discuss
in greater detail briefly in Section 3. It is thus natural to ask whether there exist realizations of
class field theory for other number fields. Enter the theory of complex multiplication.

The group law on an elliptic curve 𝐸 gives us a well-defined ring of endomorphisms End(𝐸)
of 𝐸. For an elliptic curve defined overℂ, each integer𝑚 gives us a multiplication-by-𝑚 endomor-
phism taking a point 𝑥 in 𝐸 to [𝑚]𝑥 = 𝑥 + . . . + 𝑥 , where there are𝑚 summands. It is a standard
fact from the theory of elliptic curves that an elliptic curve over ℂ has either End(𝐸) ≃ ℤ or
End(𝐸) ≃ 𝑅, where 𝑅 is an order in a quadratic imaginary field [5]. If End(𝐸) is larger than ℤ,
then 𝐸 is said to have complex multiplication, or CM for short.

Elliptic curves with complexmultiplication provide an explicit realization of class field theory
for quadratic imaginary fields. In particular, for such a field 𝐾 , we will see the intricate relation-
ship between elliptic curves with complex multiplication by O𝐾 with the arithmetic of𝐾 . We will
prove that the Hilbert class field of 𝐾 is given by adjoining the 𝑗-invariant of an elliptic curve 𝐸
with complex multiplication by O𝐾 , and we will see the way in which the torsion points of 𝐸 gen-
erate abelian extensions of 𝐾 , just as roots of unity (the torsion points of ℂ/ℤ) generate abelian
extensions of ℚ. The theory culminates with an analytic description of the (algebraic) action of
Gal(𝐾𝑎𝑏/𝐾) on the torsion points of 𝐸. Finally, in the last section, to a CM-elliptic curve 𝐸 we will
associate a Grössencharacter and describe how the Hecke 𝐿-series of the Grössencharacter is re-
lated to the Hasse-Weil 𝐿-series of 𝐸. While there exist generalizations of these results to abelian
varieties (of higher genus) with complex multiplication (see [3]), little is known otherwise. In
fact, analogous results are for real quadratic fields are still elusive.

In the following, which is adapted from Chapter 2 of Silverman’s Advanced Topics in the
Arithmetic of Elliptic Curves [4] and Chapter 8 of Cassels’ and Frölich’s Algebraic Number Theory
[1], we assume basic familiarity with the theory of elliptic curves and the statements of class
field theory (both the ideal-theoretic and idèle-theoretic formulations). The goal of this paper is
not to give a complete treatment of this theory. For this, we refer the reader to Silverman [4].
Rather, its purpose is to give an overview of the main ideas at play while providing enough detail
to (hopefully) be comprehensible.

2. Class Field Theory, a Review

We give a brief overview of the ideal-theoretic formulation of class field theory, followed
by an even more succinct summary of the idèle-theoretic formulation (we will need this when
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discussing 𝐿-series and the Grössencharacter of an elliptic curve). For our purposes, it will be
enough to state these results for totally imaginary fields.

Given a totally imaginary field 𝐾 , let 𝐿/𝐾 be a finite abelian extension. Consider an unrami-
fied prime𝔭 of𝐾 , and let𝔓 be a prime of 𝐿 lying over𝔭. Let 𝜅 and 𝜆 denote the respective residue
fields. Because 𝔭 is unramified, the decomposition group 𝐷 (𝔓/𝔭) is isomorphic to Gal(𝜆/𝜅).
Thus, there is a unique element 𝜎𝔭 of 𝐷 (𝔓/𝔭) mapping to Frobenius. Since 𝐿/𝐾 is abelian, this
element does not depend on the chosen prime𝔓 lying above 𝔭 (for a generic extension 𝐿/𝐾 , note
that 𝔭 determines only the conjugacy class of 𝜎𝔭; for abelian extensions this class is the singleton
{𝜎𝔭}). Hence, to each unramified prime 𝔭 of 𝐾 , we may associate an element of Gal(𝐿/𝐾) that is
uniquely determined by the property

𝜎𝔭 (𝑥) ≡ 𝑥 |𝔭| mod 𝔓

for all 𝑥 ∈ O𝐾 .

For an integral ideal 𝔠 of 𝐾 , let 𝐽 (𝔠) be the group of fractional ideals relatively prime to 𝔠. Let
𝐽𝐾 denote 𝐽 ((1)). We also let the group of principal ideals congruent to 1 modulo 𝔠 be denoted by

𝑃 (𝔠) = {(𝛼) | 𝛼 ∈ 𝐾∗, 𝛼 ≡ 1 mod 𝔠}.

Let 𝔠 be an integral ideal of 𝐾 divisible by the primes ramified in 𝐿/𝐾 , and define the Artin map
(· , 𝐿/𝐾) : 𝐽 (𝔠) → Gal(𝐿/𝐾) by setting (𝔭, 𝐿/𝐾) = 𝜎𝔭 and extending multiplicatively.

Theorem 2.1. Let 𝐿/𝐾 be a finite abelian extension of number fields. Then the kernel of the Artin
map contains 𝑃 (𝔠) for some integral ideal 𝔠 of 𝐾 divisible by precisely the primes of 𝐾 that ramify
in 𝐿. There is some largest ideal for which this is true, called the conductor of 𝐿/𝐾 and denoted 𝔠𝐿/𝐾 .
The Artin map

(· , 𝐿/𝐾) : 𝐼 (𝔠𝐿/𝐾 ) → Gal(𝐿/𝐾)
is a surjective homomorphism with kernel 𝑁 𝐿

𝐾
(𝐽𝐿)𝑃 (𝔠𝐿/𝐾 ).

The idèlic formulation of class field theory that we need can be packaged into the following
theorem. Let 𝔸∗

𝐾
denote the idèle group of the number field 𝐾 .

Theorem 2.2. For a number field 𝐾 , there is a unique continuous homomorphism

[· , 𝐾] : 𝔸∗
𝐾 → Gal(𝐾𝑎𝑏/𝐾)

such that the following holds: for any finite abelian extension 𝐿/𝐾 and idèle 𝑠 ∈ 𝔸∗
𝐾
whose ideal (𝑠)

is coprime to the primes that ramify in 𝐿, we have that

[𝑠, 𝐾] |𝐿 = ((𝑠), 𝐿/𝐾).

Finally, we will state the following version of Dirichlet’s theorem on primes in arithmetic
progressions.

Theorem 2.3. For a number field 𝐾 and integral ideal 𝔠 of 𝐾 , every ideal class in 𝐽 (𝔠)/𝑃 (𝔠), the
ray class group of 𝐾 modulo 𝔠, contains infinitely many degree-1 primes of 𝐾 .
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3. Cyclotomic Fields

Before understanding class field theory for quadratic imaginary fields, we first formulate the
analogous statements forℚ. The approach in this simpler case will serve as a rough guideline for
the rest of the paper.

Since ℚ has trivial class group, its Hilbert class field is trivial as well. We already know from
Kronecker–Weber that the complex roots of unity generate abelian extensions ofℚ. We can take
the following viewpoint on the cyclotomic theory, which will inform our approach in the sequel,
where an elliptic curve 𝐸 (ℂ) will take the place of the multiplicative group ℂ∗. Let 𝜇𝑛 denote the
𝑛th roots of unity, i.e., the kernel of the map ℂ∗ → ℂ∗ given by 𝑧 ↦→ 𝑧𝑛 . Recall that ℚ(𝜇𝑛)/ℚ is
an abelian extension ramified precisely at the primes dividing 𝑛. Let 𝜁 be a generator of 𝜇𝑛 . For a
prime 𝑝 coprime to 𝑛, consider the Frobenius element 𝜎𝑝 ∈ Gal(ℚ(𝜇𝑛)/ℚ) associated to 𝑝 . Now,
if ℘ is a prime ofℚ(𝜇𝑛) lying over 𝑝 , then recall that 𝜎𝑝 is uniquely characterized by the property

𝜁 𝜎𝑝 ≡ 𝜁 𝑝 mod ℘.

Because (𝑝, 𝑛) = 1, it follows that 𝑥𝑛 − 1 is separable modulo ℘, and hence its roots are distinct
modulo ℘. Therefore, the above can be strengthened to an equality 𝜁 𝜎𝑝 = 𝜁 𝑝 , and we have that
𝜎𝑝 = 1 if and only if 𝑝 ≡ 1 mod 𝑛. Hence, ℚ(𝜇𝑛) is the ray class field of ℚ.

Now, recall that the exponential map 𝑓 : ℂ/ℤ → ℂ∗ taking 𝑡 ↦→ 𝑒2𝜋𝑖𝑡 gives an analytic
parametrization of ℂ∗. By Kronecker–Weber, the torsion points ℂ∗

tors = 𝑓 (ℚ/ℤ) generate abelian
extensions of ℚ. Class field theory gives us an analytic description of the action of Gal(ℚ𝑎𝑏/ℚ)
on ℂ∗

tors:

Theorem 3.1. Let 𝜎 ∈ Aut(ℂ) and 𝑠 ∈ 𝔸∗
ℚ
be such that [𝑠,ℚ] = 𝜎 |ℚ𝑎𝑏 . There exists a unique

complex-analytic isomorphism 𝑓 ′ : ℂ/𝑠−1ℤ → ℂ∗ such that the following diagram commutes

ℚ/ℤ ℚ/𝑠−1ℤ

ℂ∗ ℂ∗.

𝑠−1

𝑓 𝑓 ′

𝜎

Note that Theorem 3.1 repackages the algebraic information of the action of Gal(ℚ𝑎𝑏/ℚ) into
an analytic action by multiplication. In particular, we see that

𝑓 (𝑡) [𝑠,ℚ] = 𝑓 ′(𝑠−1𝑡)

for all 𝑡 ∈ ℚ/ℤ (multiplication in ℚ/ℤ by an idèle is defined componentwise using the decom-
position ℚ/ℤ ≃

⊕
𝑝 ℚ𝑝/ℤ𝑝 ). Moreover, it follows from Theorem 3.1 that 𝑓 ′(𝑡) = 𝑒2𝜋𝑖𝑁𝑠𝑡 , where

𝑁𝑠 is some rational number depending on 𝑠 . Hence, the above can be translated as(
𝑒2𝜋𝑖𝑡 ) [𝑠,ℚ]

= 𝑒2𝜋𝑖𝑁𝑠 (𝑠−1𝑡)

for 𝑡 ∈ ℚ/ℤ, which elucidates the way in which the Galois action is realized as the analytic
multiplication-by-(𝑁𝑠𝑠−1) action.
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4. Elliptic Curves and Class Groups

Let 𝐸/ℂ be an elliptic curve with complex multiplication. Then End(𝐸) ⊗ ℚ ≃ 𝐾 for 𝐾 a
quadratic imaginary field, and End(𝐸) is an order in 𝐾 . We say that 𝐸 has complex multiplication
by 𝑅 if End(𝐸) ≃ ℝ ⊂ ℂ; if 𝐾 = 𝑅 ⊗ ℚ, then we say that 𝐸 has complex multiplication by 𝐾 .
In the sequel, unless stated otherwise, we assume that we are dealing with elliptic curves with
complex multiplication by O𝐾 for 𝐾 a quadratic imaginary field. Let E(O𝐾 ) denote the set of
elliptic curves over ℂ with End(𝐸) ≃ O𝐾 , up to isomorphism. With this setup out of the way, we
state and sketch the proof of the main theorem of this section:

Theorem 4.1. Let 𝐾 be a quadratic imaginary field. Then #E(O𝐾 ) = #Cl(𝐾).

In order to better understand this bijection, we first recall some facts about elliptic curves
over ℂ. In particular, it is a standard complex-analytic result that there is a bijection between the
set of isomorphism classes of elliptic curves over ℂ and the set of homothety classes of lattices
in ℂ (recall that two lattices Λ,Λ′ ⊂ ℂ are said to be homothetic if Λ = 𝛼Λ′ for some 𝛼 ∈ ℂ). For
an elliptic curve 𝐸 defined over ℂ with corresponding lattice Λ ⊂ ℂ, we have an isomorphism
ℂ/Λ → 𝐸 (ℂ) given by taking 𝑧 ↦→ (℘(𝑧), ℘′(𝑧)), where ℘ is the Weierstrass-℘ function for
the lattice Λ (we will not make further mention of such complex analytic machinery; for a nice
introduction to the analytic theory, we refer the reader to [5] or [2]). We thus note that E(O𝐾 ) is
equal to the set of homothety classes of lattices Λ ⊂ ℂwith End(ℂ/Λ) ≃ O𝐾 , where End(ℂ/Λ) ≃
{𝛼 ∈ ℂ | 𝛼Λ ⊂ Λ}.

This bijection—between elliptic curves and lattices—is very informative. In particular, given a
quadratic imaginary field 𝐾 , we can use this bijection to construct an elliptic curve with complex
multiplication by O𝐾 . Consider a nonzero fractional ideal 𝔞 of 𝐾 . Since 𝐾 is imaginary, it embeds
uniquely (up to complex conjugation) into ℂ, and we may view 𝔞 as a subgroup of ℂ. Further,
recall that 𝔞 is a ℤ-module of rank 2, and note that 𝔞 is not contained in ℝ since 𝐾 is imaginary.
Thus, we may regard each fractional ideal 𝔞 as a lattice in ℂ and consider the associated elliptic
curve 𝐸𝔞 = ℂ/𝔞. The endomorphism ring of 𝐸𝔞 is

End(𝐸𝔞) ≃ {𝛼 ∈ ℂ | 𝛼𝔞 ⊂ 𝔞} = {𝛼 ∈ 𝐾 | 𝛼𝔞 ⊂ 𝔞} = O𝐾 ,
where the first equality follows from the fact that 𝔞 ⊂ 𝐾 and the second from the fact that 𝔞
is a fractional ideal. Hence, we have a map from the group of fractional ideals of 𝐾 to E(O𝐾 ).
Furthermore, for 𝑐 ∈ 𝐾 , note that 𝔞 and 𝑐𝔞 yield isomorphic elliptic curves, so this map descends
to the quotient of the group of fractional ideals by the group of principal ideals, i.e., the ideal class
group. To summarize, if �̄� denotes the ideal class of 𝔞, we have a map Cl(𝐾) → E(O𝐾 ) given by
�̄� ↦→ 𝐸𝔞 .

More generally, consider a lattice Λ with 𝐸Λ ∈ E(O𝐾 ). For a nonzero fractional ideal 𝔞 of 𝐾 ,
consider the product

𝔞Λ = {𝛼1𝜆1 + . . . + 𝛼𝑟𝜆𝑟 | 𝛼𝑖 ∈ 𝔞, 𝜆𝑖 ∈ Λ}.
This is again a lattice in ℂ, and we have that End(𝐸𝔞𝜆) = O𝐾 . Moreover, 𝐸𝔞Λ ≃ 𝐸𝔟Λ if and only if
�̄� = �̄� in Cl(𝐾). Using these facts, we define a Cl(𝐾)-action on E(O𝐾 ) given by

�̄� ∗ 𝐸Λ = 𝐸𝔞−1Λ.

(The reason for taking 𝔞−1 will become apparent in the following section.) This Cl(𝐾)-action is
transitive, and it is simply so by the above. Note that Theorem 4.1 follows immediately. All of
the facts stated in this paragraph are nontrivial, but we omit their proofs for the sake of brevity.
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5. The j-invariant and the Hilbert Class Field

Recall that to each elliptic curve 𝐸 we may associate a quantity called the 𝑗-invariant of the
curve, which is so named because it only depends on the isomorphism class of the curve. If 𝐸 is
modeled by the Weierstrass equation 𝐸 : 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵, then 𝑗 (𝐸) = −1728(4𝐴)3/Δ, where
Δ = −16(4𝐴3 + 27𝐵2) is the discriminant of elliptic curve. The 𝑗-invariant can also be realized
analytically as a bijection between moduli spaces of elliptic curves 𝑗 : M1 → M0,4 that is an
isomorphism of orbifolds (see [2] for more details). From this analytic picture, we have that, over
ℂ, two elliptic curves are isomorphic if and only if they have the same 𝑗-invariant.

Proposition 5.1. Let 𝐸 be an elliptic curve with complex multiplication by O𝐾 , where 𝐾 is a qua-
dratic imaginary field. Then 𝑗 (𝐸) is algebraic. (In fact, 𝑗 (𝐸) is an algebraic integer, but we will not
need this fact.)

Proof. By Theorem 4.1, we may associate ℎ𝐾 = #Cl(𝐾) 𝑗-invariants to O𝐾—one for each curve in
E(O𝐾 ). For 𝜎 ∈ Aut(ℂ), we have that End(𝐸𝜎 ) ≃ End(𝐸) (where 𝐸𝜎 is given by applying 𝜎 to the
coefficients of the Weierstrass equation). This follows from noting that if 𝜙 : 𝐸 → 𝐸 is in End(𝐸),
then 𝜙𝜎 ∈ End(𝐸𝜎 ). Thus, 𝐸𝜎 represents one of the finitely many isomorphism classes in E(O𝐾 ).
Since the 𝑗-invariant is a rational combination of the coefficients of the Weierstrass equation, we
have that 𝑗 (𝐸𝜎 ) = 𝑗 (𝐸)𝜎 . It follows that there are only finitely many possible values 𝑗 (𝐸)𝜎 for
𝜎 ∈ Aut(ℂ), which forces [ℚ( 𝑗 (𝐸)) : ℚ] < ∞, as desired. □

One consequence of the above proposition is that E(O𝐾 ) is in bijection with the set of iso-
morphism classes of elliptic curves overℚ. In the sequel, this identification will allow us to work
arithmetically, so from here on out, identify E(O𝐾 ) with the isomorphism classes of elliptic curves
defined over ℚ. The goal of this section is to prove the following theorem, but along the way we
will actually show much more.

Theorem 5.2. Let 𝐾 be a quadratic imaginary field; let 𝐸 ∈ E(O𝐾 ). Then 𝐾 ( 𝑗 (𝐸)) is the Hilbert
class field of 𝐾 .

Since the elements of E(O𝐾 ) is defined over ℚ, there is a natural action of absolute Galois
group Gal(𝐾/𝐾) on E(O𝐾 ) given by 𝐸 ↦→ 𝐸𝜎 for 𝜎 ∈ Gal(𝐾/𝐾). Recall from Section 4 that Cl(𝐾)
acts simply transitively on E(O𝐾 ). Therefore, for 𝜎 ∈ Gal(𝐾/𝐾), there is a unique �̄� ∈ Cl(𝐾) for
which 𝐸𝜎 = �̄� ∗ 𝐸. This gives us a well-defined map

𝐹 : Gal(𝐾/𝐾) → Cl(𝐾)

characterized by the property 𝐸𝜎 = 𝐹 (𝜎) ∗ 𝐸. It is not shocking (nor hard to verify) that 𝐹 is a
homomorphism. More surprising, however, is that this map does not depend on the choice of
elliptic curve 𝐸. The proof of this statement highly nontrivial; as a result we take it for granted.
Thus, the homomorphism 𝐹 is characterized by the property that 𝐸𝜎 = 𝐹 (𝜎) ∗ 𝐸 for all 𝜎 ∈
Gal(𝐾/𝐾) and all 𝐸 ∈ E(O𝐾 ).

Now, Cl(𝐾) is abelian, so 𝐹 factors through Gal(𝐾𝑎𝑏/𝐾). Using class field theory, it turns out
that we can actually understand 𝐹 explicitly through the following proposition.
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Proposition 5.3. There is a finite set 𝑆 ⊂ ℤ of primes such that the following holds. For a prime
𝑝 ∉ 𝑆 that splits in 𝐾 , say as 𝑝O𝐾 = 𝔭𝔭′, we have that

𝐹 (𝜎𝔭) = �̄� ∈ Cl(𝐾).

Although this proposition only describes 𝐹 for the Frobenius elements whose corresponding
primes split in 𝐾 , it is deceptively powerful. One of its consequences is the following theorem,
which we assume using Proposition 5.3.

Theorem 5.4. Let 𝐸 be an elliptic curve representing an isomorphism class in E(O𝐾 ). Then𝐾 ( 𝑗 (𝐸))
is the Hilbert class field 𝐻 of 𝐾 . Moreover, for every prime ideal of 𝐾 , we have

𝑗 (𝐸)𝜎𝔭 = 𝑗 (�̄� ∗ 𝐸);
hence, for any fractional ideal 𝔞 of 𝐾 , we have

𝑗 (𝐸) (𝔞,𝐻/𝐾) = 𝑗 (�̄� ∗ 𝐸).

Remark 5.5. We remark here that had we taken the action of Cl(𝐾) on E(O𝐾 ) to be 𝔞∗𝐸Λ = 𝐸𝔞Λ,
then the Artin symbol (𝔞, 𝐻/𝐾) would act by �̄�−1 rather than �̄�.

Proof of Theorem 5.4. Let 𝐿 be the field fixed by ker(𝐹 ). We have that

Gal(𝐾/𝐿) = {𝜎 ∈ Gal(𝐾/𝐾) | 𝐹 (𝜎) = 1} = {𝜎 ∈ Gal(𝐾/𝐾) | 𝐹 (𝜎) ∗ 𝐸 = 𝐸𝜎 = 𝐸},
since Cl(𝐾) acts simply transitively on E(O𝐾 ). If 𝐸𝜎 = 𝐸, then 𝑗 (𝐸)𝜎 = 𝑗 (𝐸𝜎 ) = 𝑗 (𝐸), so the above
is equal to

{𝜎 ∈ Gal(𝐾/𝐾) | 𝑗 (𝐸𝜎 ) = 𝑗 (𝐸)𝜎 = 𝑗 (𝐸)} = Gal(𝐾/𝐾 ( 𝑗 (𝐸))) .
By Galois theory, it follows that 𝐾 ( 𝑗 (𝐸)) = 𝐿. Thus, 𝐹 factors through the quotient of Gal(𝐾/𝐾)
by Gal(𝐾/𝐿) = ker(𝐹 ) to give an injective map 𝐹 : Gal(𝐿/𝐾) → Cl(𝐾). It follows that Gal(𝐿/𝐾)
is abelian.

Composing 𝐹 with the Artin map (· , 𝐿/𝐾) : 𝐽 (𝔠𝐿/𝐾 ) → Gal(𝐿/𝐾), we have a map 𝐽 (𝔠𝐿/𝐾 ) →
Cl(𝐾) given by

𝐽 (𝔠𝐿/𝐾 ) Gal(𝐿/𝐾) Cl(𝐾)(·,𝐿/𝐾) 𝐹
,

where 𝔠𝐿/𝐾 is the conductor of 𝐿/𝐾 . We claim that this map is simplymap 𝐽 (𝔠𝐿/𝐾 ) → Cl(𝐾) taking
an ideal to its ideal class. In other words, for all 𝔞 ∈ 𝐽 (𝔠𝐿/𝐾 ), we have 𝐹 ((𝔞, 𝐿/𝐾)) = �̄� ∈ Cl(𝐾).
Let 𝑆 be the finite set of rational primes described in Proposition 5.3. By Dirichlet’s theorem on
primes in arithmetic progressions (Theorem 2.3), there must exist a degree-1 prime 𝔭 ∈ 𝐽 (𝔠𝐿/𝐾 )
in the same 𝑃 (𝔠𝐿/𝐾 )-class as 𝔞 such that 𝔭 does not lie over a prime in 𝑆 . In symbols, there exists
𝛼 ∈ 𝐾∗ with 𝛼 ≡ 1 mod 𝔠𝐿/𝐾 and 𝔞 = (𝛼)𝔭. It follows that

𝐹 ((𝔞, 𝐿/𝐾)) = 𝐹 (((𝛼)𝔭, 𝐿/𝐾)) = 𝐹 ((𝔭, 𝐿/𝐾)) = 𝐹 (𝜎𝔭) = �̄� = �̄�,

where the second equality follows from the fact that 𝛼 ≡ 1 mod 𝔠𝐿/𝐾 and the third equality
follows from Proposition 5.3. Thus, 𝐹 (((𝛼), 𝐿/𝐾)) = 1 for all principal ideals (𝛼) ∈ 𝐽 (𝔠𝐿/𝐾 ),
not simply the ideals (𝛼) ∈ 𝑃 (𝔠𝐿/𝐾 ). Since 𝐹 : Gal(𝐿/𝐾) → Cl(𝐾) is injective, it follows that
((𝛼), 𝐿/𝐾) = 1 for all (𝛼) ∈ 𝐽 (𝔠𝐿/𝐾 ). Now, recall that the conductor 𝔠𝐿/𝐾 is the smallest integral
ideal 𝔠 of 𝐾 such that 𝛼 ≡ 1 mod 𝔠 implies ((𝛼), 𝐿/𝐾) = 1. This forces 𝔠𝐿/𝐾 = O𝐾 . Because
the conductor is divisible by every prime of 𝐾 that ramifies in 𝐿, it follows that 𝐿/𝐾 must be
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everywhere unramified. Therefore, 𝐿 is contained in the Hilbert class field 𝐻 of 𝐾 (we need not
concern ourselves with the prime at infinity, as our field is totally imaginary).

Lastly, since 𝔠𝐿/𝐾 = (1), we have 𝐽 (𝔠𝐿/𝐾 ) = 𝐽𝐾 , and the composition of 𝐹 with the Artin map
is just the natural quotient 𝐽𝐾 ↠ Cl(𝐾). It follows that 𝐹 must be surjective and, therefore, an
isomorphism. It follows that

[𝐿 : 𝐾] = #Gal(𝐿/𝐾) = #Cl(𝐾) = #Gal(𝐻/𝐾) = [𝐻 : 𝐾],
where the third equality follows from class field theory. This forces 𝐿 = 𝐾 ( 𝑗 (𝐸)) = 𝐻 , as desired.
Note that, along the way, we showed the second statement of the theorem. □

As we have seen, Proposition 5.3 is quite powerful. It not only allows us to determine the
Hilbert class field of 𝐾 , but it also determines the Galois action on the 𝑗-invariant. However, the
proof of Proposition 5.3 is quite complicated, and thus we omit it. We briefly illustrate the main
ideas below.

Sketch of the Proof of Proposition 5.3. The first step is to replace ℚ by a finite extension 𝐿/𝐾 such
that the elements of E(O𝐾 ) and the isogenies between them are all defined over 𝐿. This step is
fairly nontrivial, but, assuming that it is possible, we proceed as follows. Let 𝑆 be the finite set of
primes 𝑝 in ℤ satisfying one of the following:

(1) 𝑝 ramifies in 𝐿;

(2) some 𝐸 in E(O𝐾 ) has bad reduction at 𝑝;

(3) 𝑝 is such that 𝑣𝑝 (𝑁 𝐿
ℚ
( 𝑗 (𝐸) − 𝑗 (𝐸′))) ≠ 0 for some 𝐸, 𝐸′ ∈ E(O𝐾 ).

The last condition can be reinterpreted as follows: if 𝑝 ∉ 𝑆 and𝔓 divides 𝑝O𝐿 , then 𝑗 (𝐸) ≡ 𝑗 (𝐸′)
mod𝔓 if and only if 𝐸 ≃ 𝐸′.

Then, for𝔓|𝔭 in 𝐿, we reduce modulo𝔓 and compute that
𝑗 (�̄� ∗ 𝐸) = 𝑗 (𝐹 (𝜎𝔭) ∗ 𝐸) mod 𝔓.

This computation implies the proposition by our choice of 𝑆 , but it is nontrivial. Roughly, it is
done by considering a reduction of the invariant differential on 𝐸 and using this to show that the
reduction of some maps is inseparable. This allows us to compute things explicitly downstairs
using Frobenius, from which the congruence of 𝑗-invariants follows. □

6. Generating Abelian Extensions

Having determined the Hilbert class field of 𝐾 , we now turn to generating abelian extensions
of 𝐾 . Recall that, in the cyclotomic case, abelian extensions of ℚ were obtained by adjoining
the torsion points of ℂ/ℤ to its Hilbert class field. In particular, we adjoin the values given by
evaluating the exponential map—an analytic parameterization of ℂ/ℤ—at the torsion points of
ℂ/ℤ.

We proceed similarly in the case of elliptic curves. The idea is that the torsion points of an
elliptic curve with complex multiplication by O𝐾 will generate abelian extensions of the Hilbert
class field 𝐻 = 𝐾 ( 𝑗 (𝐸)). To make this precise, we choose a model for 𝐸 that is defined over 𝐻
and let ℎ : 𝐸 → 𝐸/Aut(𝐸) ≃ ℙ1 be a Weber function (i.e., a finite map ℎ : 𝐸 → 𝐸/Aut(𝐸)) that is
defined over𝐻 . We remark that as long as 𝑗 (𝐸) ≠ 0, 1728, we can take ℎ to be the Weber function
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given by ℎ(𝑥,𝑦) = 𝑥 , where 𝐸 has Weierstrass equation 𝑦2 = 𝑥3 +𝐴𝑥 +𝐵 for𝐴, 𝐵 ∈ 𝐻 . The Weber
function gives us a well-defined way to adjoin the torsion points of 𝐸 to ℂ.

Now, for an integral ideal 𝔠 of 𝐾 , let

𝐸 [𝔠] = {𝑃 ∈ 𝐸 | [𝛾]𝑃 = 0 for all 𝛾 ∈ 𝔠},
where [𝛾] is the multiplication-by-𝛾 map. We refer to 𝐸 [𝔠] as the set of 𝔠-torsion points of 𝐸.

Theorem 6.1. Let 𝐸 be an elliptic curve representing an isomorphism class in E(O𝐾 ). Fix a Weber
function ℎ : 𝐸 → ℙ1, and let 𝔠 be an integral ideal of 𝐾 . Then 𝐾 ( 𝑗 (𝐸), ℎ(𝐸 [𝔠])) is the ray class field
of 𝐾 modulo 𝔠. Moreover,

𝐾𝑎𝑏 = 𝐾 ( 𝑗 (𝐸), ℎ(𝐸tors)) .

Therefore, just as in the cyclotomic case, the abelian extensions of the Hilbert class field of
𝐾 are generated by the torsion points of 𝐸.

7. The Main Theorem

The following describes the analog of Theorem 3.1 for elliptic curveswith complexmultiplica-
tion. In particular, it translates the algebraic action of an element ofGal(𝐾𝑎𝑏/𝐾) on 𝐸tors = 𝑓 (𝐾/𝔞)
into an analytic action given by multiplication by an idéle.

Theorem 7.1 (The Main Theorem of Complex Multiplication). Let 𝐸/ℂ be an elliptic curve rep-
resenting an isomorphism class in E(O𝐾 ). Let 𝜎 ∈ Aut(ℂ) and 𝑠 ∈ 𝔸∗

𝐾
an idèle of 𝐾 such that

[𝑠, 𝐾] = 𝜎 |𝐾𝑎𝑏 . For a fractional ideal 𝔞 of 𝐾 , let 𝑓 : ℂ/𝔞 → 𝐸 (ℂ) be a complex-analytic isomor-
phism. Then there is a unique complex-analytic isomorphism 𝑓 ′ : ℂ/𝑠−1𝔞 → 𝐸𝜎 (ℂ) such that the
following diagram commutes:

𝐾/𝔞 𝐾/𝑠−1𝔞

𝐸 (ℂ) 𝐸𝜎 (ℂ).

𝑠−1

𝑓 𝑓 ′

𝜎

The multiplication-by-𝑠−1 map is defined componentwise via 𝐾/𝔞 ≃
⊕

𝔭 𝐾𝔭/𝔞𝔭 .

8. Grössencharacters and 𝐿-series

The theorem in the preceding section leads to a beautiful connection with the analytic theory
of elliptic curves. To each elliptic curve defined over a number field 𝐿 we can associate its Hasse–
Weil 𝐿-function, which we define below. Studying the 𝐿-function of 𝐸 (𝐿) can reveal important
arithmetic information about the curve. For example, the Birch–Swinnerton–Dyer conjecture—
one of the seven Millennium Problems—hypothesizes that that the rank of 𝐸 (𝐿) (as an abelian
group) is the order of the zero of 𝐿(𝐸/𝐿, 𝑠) at 𝑠 = 1.

Definition 8.1. For a prime 𝔓 of 𝐿, let 𝜆𝔓 denote its residue field, and let 𝑞𝔓 = #𝜆𝔓. If 𝐸 has
good reduction at𝔓, then define

𝐿𝔓(𝐸/𝐿, 𝑡) = 1 − (𝑞𝔓 + 1 − #𝐸 (𝜆𝔓))𝑇 + 𝑞𝔓𝑇 2.
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Otherwise, set

𝐿𝔓(𝐸/𝐿, 𝑡) =

𝑡 − 1 if 𝐸 has split multiplicative reduction at𝔓;
1 + 𝑡 if 𝐸 has nonsplit multiplicative reduction at𝔓;
1 otherwise.

The polynomial 𝐿𝔓(𝐸/𝐿, 𝑡) is called the local 𝐿-series of 𝐸 at 𝔓. We piece the local 𝐿-series into
the (global) 𝐿-series of 𝐸/𝐿 by setting

𝐿(𝐸/𝐿, 𝑠) =
∏
𝔓

𝐿𝔓(𝐸/𝐿, 𝑞−𝑠𝔭 )−1.

Using the basic theory of elliptic curves, one can show that the 𝐿-series of 𝐸/𝐿 converges
to an analytic function for 𝑠 with Re(𝑠) > 3/2. In fact, much more is true. As a corollary to
the Taniyama–Shimura–Weil conjecture (which implies Fermat’s Last Theorem), we have the
following:

Theorem 8.2 (Taylor–Wiles). Let 𝐿 be a number field and 𝐸 an elliptic curve defined over 𝐿. Then
the 𝐿-series of 𝐸/𝐿 has an analytic continuation to the entirety ofℂ and a functional equation relating
𝐿(𝐸/𝐿, 𝑠) to 𝐿(𝐸/𝐿, 2 − 𝑠).

However, assuming Tate’s thesis, one can give a proof of Theorem 8.2 for an elliptic curve 𝐸
with complex multiplication by relating its 𝐿-series to the Hecke 𝐿-series attached to a Grössen-
character associated to 𝐸. Recall that a Grössencharacter on a number field 𝐿 is a continuous
homomorphism

𝜓 : 𝔸∗
𝐿 → ℂ∗

whose restriction to 𝐿∗ ⊂ 𝔸∗
𝐿
is trivial. Moreover, given a Grössencharacter 𝜓 , let 𝐿(𝜓, 𝑠) denote

its Hecke 𝐿-series.

Theorem 8.3 (Hecke; Tate). Let𝜓 be a Grössencharacter with Hecke 𝐿-series 𝐿(𝜓, 𝑠). Then 𝐿(𝜓, 𝑠)
has an analytic continutation to all of ℂ, and there is some functional equation relating 𝐿(𝜓, 𝑠) to
𝐿(𝑁 − 𝑠,𝜓 ), where 𝑁 is a real number depending on𝜓 .

It is a consequence of Theorem 7.1 that we may associate a Grössencharacter to an elliptic
curve with complex multiplication. We do so with the following theorem, which is a corollary of
Theorem 7.1.

Theorem 8.4. Let 𝐸/𝐿 be an elliptic curve representing a class in E(O𝐾 ). For an idèle 𝑥 ∈ 𝔸∗
𝐿
, let

𝑠 = 𝑁 𝐿
𝐾
𝑥 ∈ 𝔸∗

𝐾
. There exists a unique 𝛼 = 𝛼𝐸/𝐿 (𝑥) ∈ 𝐾∗ such that the following hold: 𝛼O𝐾 = (𝑠)

(here (𝑠) denotes the ideal of 𝑠), and for any fractional ideal 𝔞 of𝐾 and complex-analytic isomorphism
𝑓 : ℂ/𝔞 → 𝐸 (ℂ), the diagram

𝐾/𝔞 𝐾/𝔞

𝐸 (𝐿𝑎𝑏) 𝐸 (𝐿𝑎𝑏)

𝛼𝑠−1

𝑓 𝑓

[𝑥,𝐿]

commutes.
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Thus, we have a well-defined homomorphism 𝛼𝐸/𝐿 : 𝔸∗
𝐿
→ 𝐾∗ ⊂ ℂ∗, but this map is not

a Grössencharacter. To see why, we show that the restriction of 𝛼𝐸/𝐿 to 𝐿 is nontrivial. Let
𝑐 ∈ 𝐿∗ ⊂ 𝔸∗

𝐿
, and note that [𝑐, 𝐿] = 1. By the above, 𝛼𝐸/𝐿 (𝑐) is the unique element of 𝐾∗

such that 𝛼O𝐾 = 𝑁 𝐿
𝐾
((𝑐))O𝐾 = 𝑁 𝐿

𝐾
(𝑐)O𝐾 and multiplication by 𝛼𝑁 𝐿

𝐾
𝑐−1 gives the identity map

on 𝐾/𝔞. From this description, we see immediately that 𝛼𝐸/𝐿 (𝑐) = 𝑁 𝐿
𝐾
𝑐 . Thus, 𝛼𝐸/𝐿 is not a

Grössencharacter. However, we can correct for this in the following way. Let𝜓𝐸/𝐿 : 𝔸∗
𝐿
→ ℂ∗ be

given by
𝜓𝐸/𝐿 (𝑥) = 𝛼𝐸/𝐿 (𝑥)𝑁 𝐿

𝐾 (𝑥
−1)∞.

Using the computation from the above, it is straightforward to verify that𝜓𝐸/𝐿 is indeed aGrössen-
character of 𝐿.

It turns out that we can express the 𝐿-series of an elliptic curve with complex multiplication
in terms of the Hecke 𝐿-series attached to the Grössencharacter of the curve.

Theorem 8.5 (Deuring). Consider an elliptic curve 𝐸/𝐿 with complex multiplication by O𝐾 . If
𝐾 ⊂ 𝐿, then

𝐿(𝐸/𝐿, 𝑠) = 𝐿(𝜓𝐸/𝐿, 𝑠)𝐿(𝜓𝐸/𝐿, 𝑠),
where 𝜓𝐸/𝐿 : 𝔸∗

𝐿
→ ℂ∗ is the Grössencharacter associated to 𝐸/𝐿. If 𝐾 ⊄ 𝐿, then let 𝑀 denote the

compositum𝑀 = 𝐿𝐾 . If𝜓𝐸/𝑀 : 𝔸∗
𝑀
→ ℂ∗ is the Grössencharacter attached to 𝐸/𝑀 , then

𝐿(𝐸/𝐿, 𝑠) = 𝐿(𝜓𝐸/𝑀 , 𝑠).

The above, in conjunctionwith Theorem 8.3, immediately implies Theorem 8.2 for 𝐸/𝐿 elliptic
curves with complex multiplication.
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